Что называют тепловым эффектом химической реакции. Тепловой эффект химической реакции

Тепловой эффект реакции количество теплоты, которое выделяется или поглощается системой в результате протекания химической реакции. Это может быть Н (Р,Т = const) или U (V,T = const).

Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (Н 0 ), то реакция называется экзотермической.

Реакции, сопровождающиеся поглощением теплоты, т.е. с повышением энтальпии системы (Н 0), называются эндотермическими.

Как и другие функции состояния, энтальпия зависит от количества вещества, поэтому ее велечену (Н) обычно относят к 1 моль вещества и выражают в кДж/моль.

Обычно функции системы определяют при стандартных условиях , в которые, кроме параметров стандартного состояния, входит стандартная температура T = 298,15 К (25C). Часто температуру указывают в виде нижнего индекса ().

5.3. Термохимические уравнения

Термохимические уравнения реакций  уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ. Обычно в качестве теплового эффекта указывается энтальпия реакции. Например,

C (графит) + O 2 (газ) = CO 2 (газ) , Н 0 298 = 396 кДж.

Тепловой эффект можно записать в уравнении реакции:

C (графит) + O 2 (газ) = CO 2 (газ) + 396 кДж.

В химической термодинамике первая форма записи употребляется чаще.

Особенности термохимических уравнений.

1. Тепловой эффект зависит от массы реагирующего вещества, поэ-

тому его обычно рассчитывают на один моль вещества. В связи с этим в термохимических уравнениях можно использовать дробные коэффициенты . Например, для случая образования одного моля хлороводорода термохимическое уравнение записывается так:

½H 2 + ½Cl 2 = HCl, H 0 298 = 92 кДж

или Н 2 + Cl 2 = 2HСl, H 0 298 = 184 кДж.

2. Тепловые эффекты зависят от агрегатного состояния реагентов; оно указывается в термохимических уравнениях индексами: ж жидкое, г  газообразное, т твердое или к – кристаллическое, р – растворенное.

Например:H 2 + ½ O 2 = H 2 О (ж) , Н 0 298 = -285,8 кДж.

H 2 + ½ О 2 = H 2 О (г) , Н 0 298 = 241,8 кДж.

3. С термохимическими уравнениями можно производить алгебраические действия (их можно складывать, вычитать, умножать на любые коэффициенты вместе с тепловым эффектом).

Термохимические уравнения более полно, чем обычные, отражают происходящие при реакции изменения  они показывают не только качественный и количественный состав реагентов и продуктов, но и количественные превращения энергии, которыми данная реакция сопровождается.

5.4. Закон Гесса и его следствия

В основе термохимических расчетов лежит закон открытый российским ученым Гессом Г. И. (1841 г.). Суть его в следующем: тепловой эффект химической реакции зависит только от начального и конечного состояния системы, но не зависит от скорости и пути процесса, то есть от числа промежуточных стадий. Это, в частности, значит, что термохимические реакции можно складывать вместе с их тепловыми эффектами. Например, образование CO 2 из углерода и кислорода можно представить следующей схемой:

С+О 2 Н 1 СО 2 1. C (граф.) +O 2 (г) = CO 2 (г) , Н 0 1 = 396 кДж.

2. C (граф.) + 1/2O 2 (г) = CO (г) , Н 0 2 = Х кДж.

Н 2 Н 3

3. CO (г) + 1/2O 2 (г) = CO 2 (г) , Н 0 3 = 285,5кДж.

СО + ½ О 2

Все эти три процесса находят широкое применение в практике. Как известно, тепловые эффекты образования СО 2 (Н 1) и горения СО (Н 3) определяются экспериментально. Тепловой же эффект образования СО (Н 2) экспериментально измерить невозможно, так как при горении углерода в условиях недостатка кислорода образуется смесь СО и СО 2 . Но энтальпию реакции образования СО из простых веществ можно рассчитать.

Из закона Гесса следует, что H 0 1 = H 0 2 + H 0 3 . Следовательно,

H 0 2 = H 0 1  H 0 3 = 396  (285,5) = 110,5 (кДж) – это и есть истенная величина

Таким образом, пользуясь законом Гесса, можно находить теплоту реакций, которые невозможно определить экспериментально.

В термохимических расчетах широко используют два следствия закона Гесса. По первому, тепловой эффект реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (реагентов).

Н 0 х.р. = n прод · H 0 ƒ прод - n исх · Н 0 ƒ реагентов ,

где n  количество вещества; Н 0 ƒ  стандартная энтальпия (теплота) образования вещества.

Тепловой эффект реакции образования 1 моль сложного вещества из простых веществ, определенный при стандартных условиях, называется стандартной энтальпией образования этого вещества (Н 0 образ или Н 0 ƒ кДж/моль).

Так как абсолютную энтальпию вещества определить невозможно, то для измерений и расчетов необходимо определить начало отсчета, то есть систему и условия, для которых принимается значение : Н = 0. В термодинамике в качестве начала отсчета принимают состояния простых веществ в их наиболее устойчивых формах при обычных условиях – в стандартном состоянии.

Например: Н 0 ƒ (О 2) = 0, но Н 0 ƒ (О 3) = 142,3 кДж/моль. Стандартные энтальпии образования определены для многих веществ и проведены в справочниках (табл. 5.1).

В общем виде для реакции аА+ вВ = сС + dD энтальпия, согласно первому следствию определяется по уравнению:

H 0 298 х.р. = (cН 0 ƒ, C + dН 0 ƒ , Е)  (аH 0 ƒ , A + вH 0 ƒ , B).

Второе следствие закона Гесса относится к органическим веществам. Тепловой эффект реакции с участием органических веществ равен сумме теплот сгорания реагентов за вычетом теплот сгорания продуктов.

При этом теплота сгорания определяется в предположении полного

сгорания: углерод окисляется до CO 2 , водород  до H 2 O, азот  до N 2 .

Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества (Н 0 сг.). При этом очевидно, что теплоты сгорания O 2 , CO 2 , H 2 O, N 2 принимаются равными нулю.

Таблица 5.1

Термодинамические константы некоторых веществ

Вещество

Н 0 f , 298 , кДж/ моль

S 0 298 , Дж/ мольK

G 0 f , 298 , кДж/ моль

Вещество

Н 0 f , 298, кДж/ моль

Дж/ мольK

G 0 f , 298 ,

С(графит)

Например, теплоту сгорания этанола

C 2 H 5 OH (ж) + 3O 2 = 2CO 2 + 3H 2 O (г)

H 0 х.р. = Н 0 сг (C 2 H 5 OH) = 2Н 0 ƒ, (CO 2)+3Н 0 ƒ, (H 2 O)  Н 0 ƒ, (C 2 H 5 OH).

Н 0 сг (C 2 H 5 OH) = 2(393,5) + 3(241,8) – (277,7) = 1234,7 кДж/моль.

Значения теплот сгорания также приведены в справочниках.

Пример 1. Определить тепловой эффект реакции дегидратации этанола, если

H 0 сг (C 2 H 4) =1422,8;H 0 сг (H 2 О) = 0; Н 0 сг (C 2 H 5 OH) =1234,7 (кДж/моль).

Решение. Запишем реакцию:C 2 H 5 OH (ж) =C 2 H 4 +H 2 O.

Согласно второму следствию определяем тепловой эффект реакции по теплотам сгорания, которые приведены в справочнике:

H 0 298 х.р = H 0 сг (C 2 H 5 OH)  H 0 сг (C 2 H 4)  H 0 сг (H 2 O) =

1234,7 + 1422,8 = 188,1 кДж/моль.

В технике для характеристики тепловых качеств отдельных видов топлива обычно используют их теплотворную способность.

Теплотворной способностью топлива называется тепловой эффект, который соответствует сгоранию единицы массы (1 кг) для твердых и жидких видов топлива или единицы объема (1 м 3) для газообразного топлива (табл. 5.2).

Таблица 5.2

Теплотворная способность и состав некоторых

распространенных видов топлива

Теплотворная способность,

кислород

Антрацит*

Древ. уголь

Прир. газ

Сырая нефть

*Антрацит – каменный уголь с максимальным содержанием углерода (94-96%).

Водород является наиболее эффективным химическим энергоносителем для энергетики, транспорта и технологии будущего, поскольку имеет очень высокую теплотворную способность (табл. 4.2), его относительно легко транспортировать, а при его сгорании образуется только вода, т.е. он является "чистым" горючим, не вызывает загрязнения воздуха. Однако, его широкому использованию в качестве источника энергии мешает слишком малое содержание водорода в природе в свободном состоянии. Большую часть водорода получают разложением воды или углеводородов. Однако, такое разложение требует большого расхода энергии, причем на практике из-за тепловых потерь на получение водорода приходится затратить больше энергии, чем ее потом можно будет получить. В перспективе, если удастся создать большие и дешевые источники энергии (например, в результате развития техники получения ядерной или солнечной энергии), часть ее будет использоваться на получение водорода. Многие ученые убеждены, что энергетика будущего – это водородная энергетика.

С помощью закона Гесса и его следствий можно определять многие величины, в том числе не определяемые экспериментально, если соответствующую неизвестной величине реакцию можно получить, складывая другие реакции с известными характеристиками.

Пример 2. Исходя из теплоты сгорания СН 4 (Н 0 сг =890кДж/моль) и Н 2 (Н 0 сг =286 кДж/моль), вычислить теплотворную способность газа, содержащего 60 % водорода и 40 % метана СН 4 .

Решение . Запишем термохимические уравнения реакций сгорания:

1) Н 2 +½О 2 = Н 2 О (ж) ;Н 0 f (Н 2 О)=286 кДж/моль;

    СН 4 + 2О 2 = СО 2 + 2Н 2 О (ж) ;Н 0 2

H 0 2 = Н 0 ƒ, (CO 2) + 2Н 0 ƒ, (Н 2 0)Н 0 ƒ, (СН 4) =3932 . 286 + 75 =890 кДж/моль.

1м 3 газа содержит 600л Н 2 и 400л СН 4 , что составляетН 2 иСН 4 . Теплотворная способность газа составит:

кДж/м 3 .

Пример 3. Используя данные таблицы 5.1, рассчитать тепловой эффект реакции сгорания этилена: С 2 Н 4 + 3О 2 = 2СО 2 + 2Н 2 О (г).

Решение. Из таблицы 5.1 выписываем значения энтальпий образования веществ, участвующих в реакции (в кДж/моль):

H 0 ƒ , co 2 =393,5;Н 0 ƒ , с 2 н 4 = 52,3;Н 0 ƒ , н 2 о =241,8.

(Напомним, что энтальпия образования простых веществ равна нулю.)

Согласно следствию из закона Гесса (4.4):

H 0 298 х.р =n прод · Н 0 ƒ , прод n исх · Н 0 ƒ , исх = 2Н 0 ƒ , со 2 + 2Н 0 ƒ , н 2 оН 0 ƒ , с 2 н 4 =

2 . (393,5) + 2 . (241,8)52,3 =1322,9 кДж.

Пример 4. Исходя из теплового эффекта реакции

3СаО (т) + Р 2 О 5 (т) = Са 3 (РО 4) 2 (т) ,Н 0 =739 кДж,

определить энтальпию образования ортофосфата кальция.

Решение. По следствию из закона Гесса:

H 0 298 х.р =Н 0 ƒ , Са 3 (PO 4) 2 (3Н 0 ƒ, СаО +Н 0 ƒ, P 2 O 5).

Из табл. 4.1: Н 0 ƒ , (СаО) =635,5;Н 0 ƒ , (P 2 O 5)=1492 (кДж/моль).

Н 0 ƒ , Са 3 (PO 4) 2 =739 + 3 . (635,5)1492 =4137,5 кДж/моль.

Пример 5. Написать термохимическое уравнение реакции сгорания твердой серы в N 2 O, если известно, что при сгорании 16 г серы выделяется 66,9 кДж тепла (предполагается, что при измерении теплоты температура продуктов снижается до температуры реагентов, равной 298 К).

Решение. Чтобы записать термохимическое уравнение, надо рассчитать тепловой эффект реакции:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ;H 0 = Х кДж.

По условию задачи известно, что при сгорании 16 г серы выделяется 66,9 кДж, а в реакции участвует 32 г серы. Составляем пропорцию:

16г 66,9 кДж

32г X кДж X = 133,8 к Дж.

Таким образом, термохимическое уравнение записывается так:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ,Н 0 х..р. =133,8 кДж.

(Так как тепло выделяется, реакция экзотермическая, Н 0 0).

Пример 6. Какое количество теплоты выделится при соединении 5,6 л водорода с хлором (н. у.), если энтальпия образования хлористого водорода равна91,8 кДж/моль (температура продуктов и реагентов равна 25С).

Решение. Н 0 ƒ , (HCl) = -91,8 кДж/моль, это значит, что при образовании одного моля HCl из простых веществ выделяется 91,8 кДж тепла, что соответствует термохимическому уравнению:

½Cl 2 +½ H 2 =HCl,H 0 ƒ =91,8 кДж.

Из уравнения видно, что для получения 1 моль HCl расходуется 0,5 моль Н 2 , т. е. 0,5·22,4 л = 11,2 л. Составляем пропорцию:

11,2 л 91,8 кДж

5,6 л XX= 45,19 кДж.

Ответ: выделится 45,19 кДж тепла.

Пример 7. Определить энтальпию образования оксида железа (III), исходя из трех термохимических уравнений (справочником не пользоваться):

    Fe 2 O 3 + 3CO = 2Fe + 3CO 2 , Н 0 1 = 26,5 кДж;

    С (графит) +½O 2 = CO,Н 0 2 =110,4 кДж;

    СO 2 = C (графит) + O 2 ,Н 0 3 = + 393,3 кДж.

Решение: Запишем уравнение, тепловой эффект которого нужно определить:

4Fe + 3O 2 = 2Fe 2 O 3 ; Н 0 4 = 2Х кДж.

Чтобы из первых трех уравнений получить четвертое, надо уравнение 1) умножить на (2), а уравнения 2) и 3) – на (6) и сложить:

1) 4Fe + 6CO 2 = 2Fe 2 O 3 + 6CO, Н 0 1 = 2·(+26,5) кДж;

2) 6CO = 6С (графит) + 3O 2 ,Н 0 2 = 6·(+110,4) кДж;

3) 6C (графит) + 6O 2 = 6СO 2 ,Н 0 3 = 6·(393,3) кДж;

Н 0 4 = 2Н 0 1 + 6Н 0 2 + 6Н 0 3 = +53 + 662,42359,8 =1644,4 кДж.

Отсюда Н 0 ƒ (Fe 2 O 3) =822,2 кДж/моль.

Видеоурок 2: Расчеты по термохимическим уравнениям

Лекция: Тепловой эффект химической реакции. Термохимические уравнения

Тепловой эффект химической реакции


Термохимия – это раздел химии, изучающий термические, т.е. тепловые эффекты реакций.


Как вам известно, каждый химический элемент обладает n-количеством энергии. Мы сталкиваемся с этим каждый день, т.к. каждый прием пищи запасает наш организм энергией химических соединений. Без этого у нас не будет сил двигаться, работать. Эта энергия поддерживает в нашем теле постоянную t 36,6.

В момент протекания реакций энергия элементов затрачивается либо на разрушение, либо на образование химических связей между атомами. Для разрушения связи энергию нужно затратить, а для образования выделить. И вот когда выделяемая энергия больше, чем затрачиваемая, образовавшийся избыток энергии превращается в тепло. Таким образом:

Выделение и поглощение теплоты при химических реакциях называется тепловым эффектом реакции , и обозначается буков Q.


Экзотермические реакции – в процессе таких реакций происходит выделение теплоты, и она передается окружающей среде.

У данного типа реакции положительный тепловой эффект +Q. В качестве примера возьмем реакцию горения метана:

Эндотермические реакции – в процессе таких реакций происходит поглощение теплоты.

У данного типа реакции отрицательный тепловой эффект -Q. К примеру, рассмотрим реакцию угля и воды при высокой t:


Тепловой эффект реакции напрямую зависит от температуры, а также от давления.


Термохимические уравнения


Тепловой эффект реакции определяется с применением термохимического уравнения. Чем оно отличается? В данном уравнении возле символа элемента указывается его агрегатное состояние (твердое, жидкое, газообразное). Это необходимо делать т.к. на тепловой эффект химических реакций влияет масса вещества в агрегатном состоянии. В конце уравнения за знаком = указывается численное значение тепловых эффектов в Дж или кДж.

В качестве примера представлено уравнение реакции, показывающее процесс сгорания водорода в кислороде: H 2 (г) + ½O 2 (г) → H 2 O(ж) + 286 кДж.

Уравнение показывает, что на 1 моль кислорода, и на 1 моль образовавшейся воды выделяется 286 кДж теплоты. Реакция - экзотермическая. Данная реакция отличается значительным тепловым эффектом.

При образовании, какого - либо соединения, будет выделяться или поглощаться такое же количество энергии, какое поглощается или выделяется при его распаде на первичные вещества.

Практически все термохимические расчеты, основываются на законе термохимии – законе Гесса. Закон был выведен в 1840 году, знаменитым российским ученым Г. И. Гессом.

Основной закон термохимии : тепловой эффект реакции, зависит от природы и физического состояния исходных и конечных веществ, но не зависит от пути протекания реакции.

Применяя данный закон, удастся вычислить тепловой эффект промежуточной стадии реакции, если известны общий тепловой эффект реакции, и тепловые эффекты других промежуточных стадий.


Знание теплового эффекта реакции имеет большое практическое значение. К примеру, врачи – диетологи используют их при составлении правильного рациона питания; в химической промышленности эти знания необходимы при нагревании реакторов и наконец, без расчёта теплового эффекта невозможно вывести ракету на орбиту.




Из теории химической связи известно, что образование связей сопровождается выделением энергии , поэтому если бы реакции протекали между свободными атомами, то все реакции сопровождались бы выделением энергии. Но химические реакции, как правило, протекают между молекулами веществ.

Сравним количество энергии, выделяемой при образовании молекулы HCl из атомов водорода (H ) и хлора (Cl ):

Н + Cl = HCl + 432 кДж/моль

с количеством энергии, выделяемой при образовании молекулы НСl из простых веществ (Н 2 и Cl 2 ):

1/2Н 2 +1/2Cl 2 = HCl + 92,31 кДж/моль.

Энергия реакции из простых веществ меньше, чем из свободных атомов, т.к. часть энергии затрачивается на разрыв связей в молекулах водорода (Н-Н) и хлора (Сl-Сl).

Следовательно, сущность химических реакций сводится к разрыву связей в молекулах исходных веществ и возникновению новых связей в молекулах продуктов реакции . В зависимости от соотношений энергий разрыва и образования соответствующих связей наблюдается выделение пли поглощение энергии. Обычно энергия выделяется или поглощается в форме теплоты.

Реакции, которые протекают с выделенном теплоты , называются экзотермическими . Например:

Н 2 + Cl 2 = 2HCl + 184,6 кДж

или Н 2 + Cl 2 = 2HCl; DH = –184,6 кДж.

Н 2 ( = 435,9 кДж/моль) и Cl 2 ( = 242,3 кДж/моль) энергии затрачивается меньше, а при образовании связей в молекулах HCl (Е HCl = 431,4 кДж/моль) - выделяется больше, т.е.

2 ´ 431,4 > (435,9 + 242,3).

Реакции, которые протекают с поглощением теплоты , называются эндотермическими . Например:

N 2 + O 2 = 2NO – 180,8 кДж

или N 2 + O 2 = 2NO; DH = 180,8 кДж.

Из примера следует, что на разрыв связей в молекулах N 2 ( = =945,43 кДж/моль) и O 2 ( = 498,38 кДж/моль) энергии затрачивается больше, а при образовании связей в молекулах NO - выделяется меньше, т.е.

2 ´631,5 < (945,43 + 498,38).

Тепловой эффект реакции - это количество теплоты, которое выделяется или поглощается при протекании реакции. Его обозначают символом Q и выражают в кДж. Для экзотермических реакций Q > 0 (+Q ), для эндотермических - Q < 0 (–Q ). В настоящее время для единообразия с термодинамикой тепловой эффект реакции обозначают DH (изменение энтальпии).

Энтальпия (Н ) - это величина, которая характеризует запас энергии в веществе. Для экзотермических реакций запас энергии в продуктах реакции меньше, чем в исходных веществах, поэтому изменение энтальпии DH < 0 (–DH). Для эндотермических реакций запас энергии в продуктах реакции больше, чем в исходных веществах, поэтому изменение энтальпии DH > 0 (+DH). Следовательно, связь между DH и Q выражается уравнением:



Тепловой эффект реакции зависит от температуры и давления, поэтому условились его определять при давлении (Р ) 1 атм или 101,3 кПа и температуре 25 °С или 298 К. Эти условия называют стандартными .

При постоянном давлении тепловой эффект реакции определяют как изменение энтальпии , а при постоянном объеме – как изменение внутренней энергии .

Термохимические уравнения

Химические уравнения, в которых указаны тепловые эффекты реакций, называются термохимическими .

В термохимических уравнениях обязательно указывают агрегатное состояние исходных веществ и продуктов реакции: г - газообразное, ж - жидкое, к - кристаллическое или тв - твердое . В зависимости от обозначения теплового эффекта (Q или DH ) термохимическое уравнение экзотермической реакции образования воды (Н 2 О (ж)) из простых веществ H 2 и O 2 записывается следующим образом:

2H 2(г) + O 2(г) = 2Н 2 О (ж) + 571,6 кДж

2H 2(г) + O 2(г) = 2Н 2 О (ж) ; DH = - 571,66 кДж.

Это термохимическое уравнение показывает, что при взаимодействии двух моль водорода и одного моль кислорода образуется два моль воды и выделяется 571,66 кДж теплоты. Чтобы показать тепловой эффект при образовании 1 моль вещества в термохимических уравнениях применяют дробные коэффициенты:

H 2(г) + 1/2O 2(г) = Н 2 О (ж) + 285,83 кДж

или H 2(г) + 1/2O 2(г) = Н 2 О (ж) ; DH = -285,83 кДж.

По термохимическим уравнениям реакций можно проводить различные расчеты.

Закон Гесса

Важнейшим законом, на котором основано большинство термохимических расчетов, является закон Гесса.

Закон Гесса : тепловой эффект химической реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода из начального состояния в конечное .

Например, тепловой эффект реакции окисления углерода в оксид углерода (IV) не зависит от того, проводится ли это окисление непосредственно, сжигая уголь до СО 2:



С (тв) + О 2(г) = СО 2(г) (DН 1)

или в две стадии, получая на первой стадии СО, а затем сжигая СО до СО 2:

первая стадия : С (тв) + 1/2О 2(г) = СО (г) (DН 2),

вторая стадия : СО (г) + 1/2О 2(г) = СО 2(г) (DН 3).

Наглядно это можно иллюстрировать в виде схемы, рис. 4.

CO 2
C, O 2
CO, 1/2O 2

Рисунок 4 – Схема определения теплового эффекта (DН) при образовании СО 2

Согласно закону Гесса тепловые эффекты связаны между собой соотношением DН 1 = DН 2 + DН 3 , пользуясь которым можно определить один из них, если другие два известны. Таким образом, на основании закона Гесса можно рассчитать тепловые эффекты таких реакций, для которых экспериментально измерить невозможно. Например, практически невозможно измерить теплоту сгорания углерода до оксида углерода (II), т.к. продукт реакции всегда будет состоять из смеси СО и СО 2 . Но экспериментально можно измерить теплоту полного сгорания углерода до СО 2 (DH 1 = -393 кДж/моль) и теплоту сгорания СО до СО 2 (DH 3 = = -283 кДж/моль). Имея эти данные, по закону Гесса легко рассчитать теплоту сгорания углерода до СО, т.е. DH 2:

DH 2 = DH 1 - DH 3 = -393 - (-283) = -110 кДж/моль

Термохимические расчеты

В термохимических расчетах применяют следствие из закона Гесса : тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом стехиометрических коэффициентов в уравнении реакции .

Для реакции: aA + bB = cC + dD

Особое значение при расчетах тепловых эффектов реакций имеют теплоты (энтальпии) образования соединений. Стандартная теплота (энтальпия) образования соединения - это количество теплоты, которое выделяется или поглощается при образовании одного моль химического соединения из простых веществ при стандартных условиях (температура 298 К, давление 101,3 кПа). Она измеряется в кДж/моль и обозначается DH 0 298 (иногда индексы опускаются и обозначают DH).

Стандартная теплота (энтальпия) образования простого вещества равна нулю.

Пример 1 . Вычислите тепловой эффект химической реакции

2H 2 + CO ® CH 3 OH (ж)

при 298 К и определите, насколько при этой температуре отличается DH и DU.

Решение

Тепловой эффект реакции равняется разности между суммой теплот образования конечных и суммой теплот образования начальных веществ. Поскольку стандартные теплоты образования отнесены к 1 молю вещества, их умножают на соответствующие стехиометрические коэффициенты n уравнения реакции.

2H 2 + CO ® CH 3 OH (ж)

КДж/моль 2 ´0 –110,53 –238,57

= –238,57 – (–110,53) = –128,04 кДж.

Тепловой эффект реакции при постоянном объеме , или изохорный тепловой эффект , можно найти из известного уравнения, связывающего изобарный и изохорный тепловые эффекты:

где: Dn - изменение числа молей газообразных веществ в результате реакции, вычисляемое по ее стехиометрическому уравнению.

Dn = – 2 – 1 = – 3 моль.

Пример 2 . Вычислите DН о, DU о, DG о (энергию Гиббса), DF о (энергию Гельмгольца) для химической реакции:

2H 2 + CO = CH 3 OH (г) .

Определите, в каком направлении пойдет реакция при стандартном давлении и 298 К.

Решение

Энергию Гиббса будем рассчитывать по уравнению:

DG 0 298 = DH 0 298 - ТDS 0 298 ,

где DH 0 298 - тепловой эффект реакции при стандартных условиях и температуре Т=298 К.

DS 0 298 - изменение энтропии в результате протекания реакции при стандартных условиях и температуре Т = 298 К. Для расчета DS 0 298 используют уравнение

где n i - число молей i-го вещества, соответствующее стехиометрическому коэффициенту перед этим веществом в уравнении реакции.

Энергию Гельмгольца будем рассчитывать по уравнению:

DF 0 298 = DG 0 298 - DnRT,

где: Dn - изменение числа молей газообразных веществ в результате реакции.

Решение задачи начинаем с выписывания справочных данных:

2H 2 + CO ® CH 3 OH (г) (Dn =1–2–1= –2)

КДж/моль 0 –110,53 –201,00

2 ´130,52 197,15 239,76

= –201,00 – 0 – (–110,53) = –90,47 кДж.

239,76 – 2 ´130,52 – 197,15 = –218,43 Дж/К.

DG 0 298 = –90470 – 298´(–218,43) = –25377,86 Дж.

DF 0 298 = –25377,86 – (–2) ´298´8,314 = –20422,66 Дж.

DG 0 298 < 0 и DF 0 298 < 0, следовательно реакция протекает в прямом направлении.

ХИМИЧЕСКАЯ КИНЕТИКА

Химическая кинетика изучает механизм и скорость реакций.

Средняя скорость гомогенной химической реакции (w) определяется изменением количества какого-либо из веществ, участвующих в реакции, в единицу времени (t) в единице объема (или изменением концентрации какого-либо вещества за единицу времени):

. (13)

Факторы, влияющие на скорость химической реакции

Зависимость скорости химической реакции от концентрации подчиняется закону действия масс. Закон открыт Гульдбергом и Вааге (1876 г.). Согласно этому закону, мгновенная (истинная) скорость реакции пропорциональна произведению концентрации реагирующих веществ, возведенных в степени, равные стехиометрическим коэффициентам в уравнении лимитирующей стадии реакции. Частицы взаимодействуют при столкновении, а число столкновений молекул пропорционально произведению концентраций реагентов.

В реакции А + В = АВ, протекающей в закрытом сосуде, скорость взаимодействия веществ в соответствиис законом выражается уравнением:

где k – коэффициент пропорциональности, называемый константой скорости реакции , [А] и [В] – равновесные концентрации веществ А и В.

Константа скорости реакции зависит от температуры, природы вещества и не зависит от концентрации, то есть является мерой реакционной способности веществ. При концентрации реагирующих веществ, равных 1 моль/дм 3 , w = k, поэтому физический смыслконстанты скорости реакции – это скорость химической реакции при концентрациях реагентов 1 моль/дм 3 .

Если газообразные или жидкие вещества реагируют с твердыми, то скорость реакции зависит от концентрации веществ в газообразном или жидком состоянии, но не зависит от концентрации веществ в твердом состоянии, например, для реакции

Н 2 (г) + S (тв) = Н 2 S (г) w = k ´ [Н 2 ].

Скорость химических реакций, протекающих с участием газообразных веществ, зависит от давления. Если в системе увеличить давление путем сжатия, то объем системы уменьшится, концентрация взаимодействующих веществ увеличится, скорость реакции возрастет.

Влияние температуры на скорость реакции. Скорость химической реакции зависит от температуры. С увеличением температуры на 10 о С скорость большинства реакций возрастает в 2-4 раза (эмпирическое правило Вант–Гоффа).

Величина, показывающая, во сколько раз увеличивается скорость реакции при увеличении температуры на 10 о С, называется температурным коэффициентом скорости реакции , обозначается γ (гамма). Величина γ меняется в пределах от 2 до 4.

Математическое выражение правила Вант – Гоффа:

, (15)

где w 2 и w 1 – скорость реакции при температуре t 2 и t 1 соответственно;

∆t = t 2 – t 1 .

Увеличение скорости реакций с повышением температуры связано с увеличением скорости движения частиц и числа столкновений между ними. Однако расчеты показывают, что при нагревании реакционной системы от 273 К до 373 К (от 0 до 100 о С) число столкновений возрастет в = 1,2 раза, а скорость реакции при γ = 2 увеличивается в 2 10 = 1024 раза. Следовательно, основная причина сильного влияния температуры на скорость в другом.

Не всякое соударение приводит к химическому взаимодействию. Реагируют лишь частицы, обладающие определенной энергией. Превращение одних веществ вдругие происходит через стадию образования некоторого активированного комплекса. Энергия, необходимая для перевода молекул в состояние активированного комплекса, называется энергией активации (Е акт). При соударении взаимодействуют лишь частицы, обладающие энергией большей или равной энергии активации. Для большинства реакций Е акт = 0 – 500, кДж/моль. При нагревании растет число активных частиц с Е ³ Е акт., увеличивается число эффективных столкновений и скорость реакции.

Зависимость константы скорости реакции k от энергии активации Е акт и температуры Т выражается уравнением Аррениуса (1889 г.):

, (16)

где Z – число столкновений в секунду в единице объема,

R – универсальная газовая постоянная (8,314 Дж/моль´К),

e – основание натурального логарифма (е =2,718),

T – температура по шкале Кельвина, К,

P – стерический фактор.

С уменьшением энергии активации и с увеличением температурывозрастает константа скорости реакции, а, следовательно, и скорость реакции .

Явление изменения скорости процесса в присутствии некоторых веществ (катализаторов) называется катализом .

Катализатор – вещество, которое изменяет скорость реакции, активно в ней участвует, оставаясь после реакции химически неизменным.

Катализаторы или увеличивают скорость реакции (они называются активаторами или положительными катализаторами ), или замедляют реакции (они называются ингибиторами или отрицательными катализаторами ).

Например, в присутствии MnO 2 (катализатор) наблюдается бурное разложение пероксида водорода: 2Н 2 О 2 2H 2 O + O 2 .

Если катализатор находится в той же фазе, что и реагирующие вещества, катализ называется гомогенным . Если катализатор и реагирующие вещества находятся в разных фазах – это гетерогенный катализ.

В присутствии катализатора образуется иной активированный комплекс с другой величиной энергии активации, что проводит к изменению скорости реакции.

Увеличение скорости реакции в присутствии катализатора связано с меньшей энергией активации нового пути процесса.

При гетерогенном катализе процесс протекает более сложно, т.к. промежуточные поверхностные соединения формируются на активных центрах (активных участках) катализатора, поэтому твердые катализаторы должны иметь большую (развитую) поверхность.

Основным законом химической кинетики является открытый в 1864–1867 гг. Гульдбергом и Вааге (Норвегия) закон действия масс , согласно которому скорость элементарной реакции пропорциональна произведению концентрацийреагирующих веществ в степенях, равных стехиометрическим коэффициентам . Такая зависимость скорости реакции от концентрации обусловлена тем, что вероятность столкновения молекул и, следовательно, их взаимодействия, пропорциональна произведению концентраций реагентов.

Рассмотрим в общем виде одностадийную обратимую реакцию, протекающую в гомогенной среде

А (г) +2В (г) Û АВ 2(г)

Предположим, что в закрытом сосуде приведены в соприкосновение вещества А и В. Скорость взаимодействия этих веществ согласно закону действия масс выразится соотношением:

где – коэффициент пропорциональности – константа скорости прямой реакции,

[А] и [В] – равновесные молярные концентрации А и В.

Если же реакция протекает в гетерогенной системе, то скорость ее не зависит от концентрации твердого вещества, т. к. концентрация его постоянна, поэтому твердое вещество не входит в уравнение закона действующих масс.

В общем виде концентрацию обозначают буквой С . – концентрация любого реагента (так как все они связаны стехиометрическими коэффициентами). Для идеального газа (условно при обычных условиях все газы приравнивают к идеальным) применимо уравнение Клапейрона-Менделеева:

РАСТВОРЫ

Растворами называются гомогенные системы, состоящие из двух или более компонентов и продуктов их взаимодействия. Растворение веществ в воде- это физико-химический процесс, при котором под влиянием молекул растворителя в растворенном веществе разрываются связи между частицами и образуются химические соединения растворяемого вещества и раствори-теля (сольваты и гидраты, если растворитель вода). Затем гидратированные частицы равномерно распределяются по всему объему раствора.

Растворение может быть как эндотермическим, так и экзотермическим процессом, поскольку разрушение структуры растворенного вещества происходит с поглощением определенного количества тепла (+ Н), а взаимодействие растворителя с частицами растворенного вещества сопровождается выделением тепла (- Н). В зависимости от того, какие процессы преобладают при растворении, тепловой эффект процесса положительный или отрицательный.

Способность вещества растворяться в данном растворителе характеризу-ется растворимостью. Растворимостью называется число, показывающее, сколько граммов растворенного вещества может раствориться в 100 г раст-ворителя при данной температуре. Растворимость вещества зависит от при-роды вещества, температуры, давления.

Одной из важнейших характеристик растворов является их концентрация.

Способы выражения концентраций:

1. Молярная концентрация – число молей растворенного вещества в 1 л раствора:

2. Нормальная концентрация – число эквивалентов растворенного вещества в 1 л раствора

3.Моляльная концентрация – показывает, сколько молей растворенного вещества содержится в 1 килограмме растворителя.

4. Массовая доля - число граммов вещества, содержащихся в 100г раствора.

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

Электролиты – это вещества, растворы и расплавы которых проводят электрический ток.

При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются электролитической диссоциации , т. е. в большей или меньшей степени распадаются на положительно и отрицательно заряженные ионы – катионы и анионы. Идея этого процесса была выдвинута шведским химиком С. Аррениусом. Ему принадлежит и первая концепция кислот и оснований. Согласно теории электролитической диссоциации С. Аррениуса:

кислоты – это вещества, при диссоциации которых в водном растворе образуются ионы водорода Н + ;

основания – это вещества, при диссоциации которых в водном растворе образуются гидроксид-ионы ОН – ;

соли – это вещества, при диссоциации которых в водном растворе образуются катионы основания и анионы кислоты.

Диссоциация двух и более основных кислот и двух и более кислотных оснований протекает ступенчато. Например:

Н 3 РО 4 Н + + Н 2 РО 4 -

Н 2 РО 4 ¯ Н + + НРО 4 2-

НРО 4 2 ¯ Н + + РО 4 3-

Ba(ОH) 2 BaOН + + OH -

7. Вычислить тепловой эффект реакции при стандартных условиях: Fe 2 O 3 (т) + 3 CO (г) = 2 Fe (т) + 3 CO 2 (г) ,если теплота образования: Fe 2 O 3 (т) = – 821,3 кДж/моль;СО (г) = – 110,5 кДж/моль;

СО 2 (г) = – 393,5 кДж/моль.

Fe 2 O 3 (т) + 3 CO (г) = 2 Fe (т) + 3 CO 2 (г) ,

Зная стандартные тепловые эффекты сгорания исходных веществ и продуктов реакции, рассчитываем тепловой эффект реакции при стандартных условиях:

16. Зависимость скорости химической реакции от температуры. Правило Вант-Гоффа. Температурный коэффициент реакции.

К реакциям приводят только столкновения между активными молекулами, средняя энергия которых превышает среднюю энергию участников реакции.

При сообщении молекулам некоторой энергии активации Е (избыточная энергия над средней) уменьшается потенциальная энергия взаимодействия атомов в молекулах, связи внутри молекул ослабевают, молекулы становятся реакционноспособными.

Энергия активации не обязательно подводится извне, она может быть сообщена некоторой части молекул путем перераспределения энергии при их столкновениях. По Больцману, среди N молекул находится следующее число активных молекул N   обладающих повышенной энергией  :

N  N·e – E / RT (1)

где Е – энергия активации, показывающая тот необходимый избыток энергии, по сравнению со средним уровнем, которым должны обладать молекулы, чтобы реакция стала возможной; остальные обозначения общеизвестны.

При термической активации для двух температур T 1 и T 2 отношение констант скоростей будет:

, (2) , (3)

что позволяет определять энергию активации по измерению скорости реакции при двух различных температурах Т 1 и Т 2 .

Повышение температуры на 10 0 увеличивает скорость реакции в 2 – 4 раза (приближенное правило Вант-Гоффа). Число, показывающее, во сколько раз увеличивается скорость реакции (следовательно, и константа скорости) при увеличении температуры на 10 0 называется температурным коэффициентом реакции:

 (4) .(5)

Это означает, например, что при увеличении температуры на 100 0 для условно принятого увеличения средней скорости в 2 раза ( = 2) скорость реакции возрастает в 2 10 , т.е. приблизительно в 1000 раз, а при = 4 –в 4 10 , т.е. в 1000000 раз. Правило Вант-Гоффа применимо для реакций, протекающих при сравнительно невысоких температурах в узком их интервале. Резкое возрастание скорости реакции при повышении температуры объясняется тем, что число активных молекул при этом возрастает в геометрической прогрессии.


25. Уравнение изотермы химической реакции Вант-Гоффа.

В соответствии с законом действующих масс для произвольной реакции

а A + bB = cC + dD

уравнение скорости прямой реакции можно записать:

,

а для скорости обратной реакции:

.

По мере протекания реакции слева направо концентрации веществ А и В будут уменьшаться и скорость прямой реакции будет падать. С другой стороны, по мере накопления продуктов реакции C и D скорость реакции справа налево будет расти. Наступает момент, когда скорости υ 1 и υ 2 становятся одинаковыми, концентрации всех веществ остаются неизменными, следовательно,

,

ОткудаK c = k 1 / k 2 =

.

Постоянная величина К с, равная отношению констант скоростей прямой и обратной реакций, количественно описывает состояние равновесия через равновесные концентрации исходных веществ и продуктов их взаимодействия (в степени их стехиометрических коэффициентов) и называется константой равновесия. Константа равновесия является постоянной только для данной температуры, т.е.

К с = f (Т). Константу равновесия химической реакции принято выражать отношением, в числителе которого стоит произведение равновесных молярных концентраций продуктов реакции, а в знаменателе – произведение концентраций исходных веществ.

Если компоненты реакции представляют собой смесь идеальных газов, то константа равновесия (К р) выражается через парциальные давления компонентов:

.

Для перехода от К р к К с воспользуемся уравнением состояния P · V = n·R·T. Поскольку

, то P = C·R·T. .

Из уравнения следует, что К р = К с при условии, если реакция идет без изменения числа моль в газовой фазе, т.е. когда (с + d) = (a + b).

Если реакция протекает самопроизвольно при постоянных Р и Т или V и Т, то значенияG и F этой реакции можно получить из уравнений:

,

где С А, С В, С С, С D – неравновесные концентрации исходных веществ и продуктов реакции.

,

где Р А, Р В, Р С, Р D – парциальные давления исходных веществ и продуктов реакции.

Два последних уравнения называются уравнениями изотермы химической реакции Вант-Гоффа. Это соотношение позволяет рассчитать значения G и F реакции, определить ее направление при различных концентрациях исходных веществ.

Необходимо отметить, что как для газовых систем, так и для растворов, при участии в реакции твердых тел (т.е. для гетерогенных систем) концентрация твердой фазы не входит в выражение для константы равновесия, поскольку эта концентрация практически постоянна. Так, для реакции

2 СО (г) = СО 2 (г) + С (т)

константа равновесия записывается в виде

.

Зависимость константы равновесия от температуры (для температуры Т 2 относительно температуры Т 1) выражается следующим уравнением Вант-Гоффа:

,

где Н 0 – тепловой эффект реакции.

Для эндотермической реакции (реакция идет с поглощением тепла) константа равновесия увеличивается с повышением температуры, система как бы сопротивляется нагреванию.

34. Осмос, осмотическое давление. Уравнение Вант-Гоффа и осмотический коэффициент.

Осмос – самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. В качестве полупроницаемой мембраны, через маленькие отверстия которой могут селективно проходить только небольшие по объему молекулы растворителя и задерживаются крупные или сольватированные молекулы или ионы, часто служит целлофановая пленка – для высокомолекулярных веществ, а для низкомолекулярных – пленка из ферроцианида меди. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой ). Для расчета значения  в растворах неэлектролитов используется эмпирическое уравнение Вант-Гоффа:

где С – моляльная концентрация вещества, моль/кг;

R – универсальная газовая постоянная, Дж/моль · К.

Величина осмотического давления пропорциональна числу молекул (в общем случае числу частиц) одного или нескольких веществ, растворенных в данном объеме раствора, и не зависит от их природы и природы растворителя. В растворах сильных или слабых электролитов общее число индивидуальных частиц увеличивается вследствие диссоциации молекул, поэтому в уравнение для расчета осмотического давления необходимо вводить соответствующий коэффициент пропорциональности, называемый изотоническим коэффициентом.

i · C · R · T,

где i – изотонический коэффициент, рассчитываемый как отношение суммы чисел ионов и непродиссоциировавших молекул электролита к начальному числу молекул этого вещества.

Так, если степень диссоциации электролита, т.е. отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества, равна  и молекула электролита распадается при этом на n ионов, то изотонический коэффициент рассчитывается следующим образом:

i = 1 + (n – 1) · ,(i > 1).

Для сильных электролитов можно принять  = 1, тогда i = n, и коэффициент i (также больше 1) носит название осмотического коэффициента.

Явление осмоса имеет большое значение для растительных и животных организмов, поскольку оболочки их клеток по отношению к растворам многих веществ обладают свойствами полупроницаемой мембраны. В чистой воде клетка сильно набухает, в ряде случаев вплоть до разрыва оболочки, а в растворах с высокой концентрацией солей, наоборот, уменьшается в размерах и сморщивается из-за большой потери воды. Поэтому при консервировании пищевых продуктов к ним добавляется большое количество соли или сахара. Клетки микроорганизмов в таких условиях теряют значительное количество воды и гибнут.

При протекании химической реакции происходит перестройка химических связей в молекулах, переход из одного агрегатного состояния в другое и т.д. Все это приводит к изменению внутренней энергии системы. При этом система может совершать работу и обмениваться энергией с окружающей средой. Поскольку все виды энергии можно свести к эквивалентному количеству теплоты, то в химической термодинамике говорят о тепловом эффекте химической реакции.

Тепловой эффект химической реакции – количество теплоты, которое выделяется или поглощается в ходе реакции при выполнении следующих условий:

Процесс протекает необратимо при постоянном объеме или давлении;

В системе не совершается никаких работ, кроме работы расширения;

Продукты реакции имеют ту же температуру, что и исходные вещества.

Согласно первому началу термодинамики тепловой эффект реакции равен: DQ =DU + p× DV. Поскольку теплота не является функцией состояния, то величина теплового эффекта химической реакции зависит от условий осуществления (пути) процесса. Различают тепловой эффект химической реакции, проведенной в изохорных условиях (DQ V =DU V ) и в изобарных (DQ p =DU p + p× DV =DН ).

Очевидно, что DQ p –DQ V =DV . Для реакций, протекающих в конденсированной фазе (жидкости, твердые вещества), DV »0, а DQ p » DQ V .

Чаще всего химические реакции проводят при постоянном давлении, поэтому при проведении термодинамических расчетов обычно используют тепловой эффект при постоянном давлении DQ p . В этом случае он соответствует изменению энтальпии системы в ходе реакции DQ p =D r Н (индекс r указывает на изменение термодинамической функции, в данном случае энтальпии, в ходе химической реакции).

Реакции, протекающие с выделением теплоты в окружающую среду, называются экзотермическими , а реакции, протекающие с поглощением теплоты из окружающей среды, – эндотермическими . Так как тепловой эффект реакции соответствует изменению энтальпии системы, то очевидно, что для экзотермических процессов D r Н <0, а для эндотермических D r Н >0.

Поскольку для химических реакций, протекающих в изобарных или изохорных условиях, теплота приобретает свойства функции состояния , то можно утверждать, что тепловой эффект реакции зависит только от вида и состояния исходных веществ и конечных продуктов и не зависит от пути превращения одних веществ в другие (промежуточных стадий). Это утверждение можно рассматривать как приложение первого начала термодинамики к химическим реакциям. Оно называется законом Гесса и является основным законом термохимии.

Г.И. Гесс (СПб Академия наук) опытным путем установил, что «если из одних исходных веществ можно получить некоторые другие вещества несколькими способами, то суммарное количество тепла, выделившееся при образовании этих веществ, будет всегда одним и тем же, независимо от способа получения».

Пример. Рассмотрим реакцию взаимодействия одного моля углерода (графит) и кислорода с образованием диоксида углерода при температуре Т =298 К.

Данный процесс можно осуществить двумя путями:

1) C(графит) + O 2 = CO 2 ; D r Н 1 = –393,51 кДж;

2) C(графит) + 0,5O 2 = CO; D r Н 2 = –110,53 кДж;

CO + 0,5O 2 = CO 2 ; D r Н 3 = –282,98 кДж.

Рис. 5‑3 Диаграмма изменения энтальпии системы при взаимодействии одного моля углерода с кислородом с образованием диоксида углерода

Диаграмма изменения энтальпии системы приведена на рис.5.3. Из нее видно, что D r Н 1 =D r Н 2 + D r Н 3 . Если неизвестен тепловой эффект одной из реакций, то его можно вычислить, зная остальные. Например, если известны D r Н 1 и D r Н 3 , то D r Н 2 =D r Н 1 –D r Н 3 .

Таким образом, используя закон Гесса, можно рассчитывать тепловые эффекты химических реакций в тех случаях, когда их экспериментальное определение невозможно или затруднено. Более того, на основе имеющихся экспериментальных данных для относительно небольшого числа химических реакций можно проводить термодинамические расчеты как реально протекающих, так и гипотетических процессов.

Тепловой эффект реакции в общем случае учитывает переход определенного числа молей исходного вещества в определенное число молей конечного вещества, согласно уравнению реакции. В этом случае численное значение теплового эффекта относится к уравнению конкретной химической реакции и его размерность [кДж]. Уравнение химической реакции, включающее в себя ее тепловой эффект, называется термохимическим уравнением .

Часто тепловой эффект реакции относят к превращениям одного моля какого-либо вещества. Стехиометрический коэффициент в уравнении реакции у данного вещества равен единице, а коэффициенты у других веществ могут быть как целыми, так и дробными. В этом случае размерность теплового эффекта [кДж/моль]. Принято тепловые эффекты реакций образования одного моля вещества обозначать D f Н , а тепловые эффекты реакций сгорания одного моля вещества – D c Н .