Формулы плоскостей. Общее уравнение плоскости в пространстве

В этом уроке мы рассмотрим, как с помощью определителя составить уравнение плоскости . Если вы не знаете, что такое определитель, зайдите в первую часть урока - «Матрицы и определители ». Иначе вы рискуете ничего не понять в сегодняшнем материале.

Уравнение плоскости по трем точкам

Зачем вообще нужно уравнение плоскости? Все просто: зная его, мы легко высчитаем углы, расстояния и прочую хрень в задаче C2. В общем, без этого уравнения не обойтись. Поэтому сформулируем задачу:

Задача. В пространстве даны три точки, не лежащие на одной прямой. Их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3);

Требуется составить уравнение плоскости, проходящей через эти три точки. Причем уравнение должно иметь вид:

Ax + By + Cz + D = 0

где числа A , B , C и D - коэффициенты, которые, собственно, и требуется найти.

Ну и как получить уравнение плоскости, если известны только координаты точек? Самый простой способ - подставить координаты в уравнение Ax + By + Cz + D = 0. Получится система из трех уравнений, которая легко решается.

Многие ученики считают такое решение крайне утомительным и ненадежным. Прошлогодний ЕГЭ по математике показал, что вероятность допустить вычислительную ошибку действительно велика.

Поэтому наиболее продвинутые учителя стали искать более простые и изящные решения. И ведь нашли! Правда, полученный прием скорее относится к высшей математике. Лично мне пришлось перерыть весь Федеральный перечень учебников, чтобы убедиться, что мы вправе применять этот прием без каких-либо обоснований и доказательств.

Уравнение плоскости через определитель

Хватит лирики, приступаем к делу. Для начала - теорема о том, как связаны определитель матрицы и уравнение плоскости.

Теорема. Пусть даны координаты трех точек, через которые надо провести плоскость: M = (x 1 , y 1 , z 1); N = (x 2 , y 2 , z 2); K = (x 3 , y 3 , z 3). Тогда уравнение этой плоскости можно записать через определитель:

Для примера попробуем найти пару плоскостей, которые реально встречаются в задачах С2. Взгляните, как быстро все считается:

A 1 = (0, 0, 1);
B = (1, 0, 0);
C 1 = (1, 1, 1);

Составляем определитель и приравниваем его к нулю:


Раскрываем определитель:

a = 1 · 1 · (z − 1) + 0 · 0 · x + (−1) · 1 · y = z − 1 − y;
b = (−1) · 1 · x + 0 · 1 · (z − 1) + 1 · 0 · y = −x;
d = a − b = z − 1 − y − (−x ) = z − 1 − y + x = x − y + z − 1;
d = 0 ⇒ x − y + z − 1 = 0;

Как видите, при расчете числа d я немного «причесал» уравнение, чтобы переменные x , y и z шли в правильной последовательности. Вот и все! Уравнение плоскости готово!

Задача. Составьте уравнение плоскости, проходящей через точки:

A = (0, 0, 0);
B 1 = (1, 0, 1);
D 1 = (0, 1, 1);

Сразу подставляем координаты точек в определитель:

Снова раскрываем определитель:

a = 1 · 1 · z + 0 · 1 · x + 1 · 0 · y = z;
b = 1 · 1 · x + 0 · 0 · z + 1 · 1 · y = x + y;
d = a − b = z − (x + y ) = z − x − y;
d = 0 ⇒ z − x − y = 0 ⇒ x + y − z = 0;

Итак, уравнение плоскости снова получено! Опять же, на последнем шаге пришлось поменять в нем знаки, чтобы получить более «красивую» формулу. Делать это в настоящем решении совсем не обязательно, но все-таки рекомендуется - чтобы упростить дальнейшее решение задачи.

Как видите, составлять уравнение плоскости теперь намного проще. Подставляем точки в матрицу, считаем определитель - и все, уравнение готово.

На этом можно было бы закончить урок. Однако многие ученики постоянно забывают, что стоит внутри определителя. Например, в какой строчке стоит x 2 или x 3 , а в какой - просто x . Чтобы окончательно разобраться с этим, давайте проследим, откуда берется каждое число.

Откуда берется формула с определителем?

Итак, разбираемся, откуда возникает такое суровое уравнение с определителем. Это поможет вам запомнить его и успешно применять.

Все плоскости, которые встречаются в задаче C2, задаются тремя точками. Эти точки всегда отмечены на чертеже, либо даже указаны прямо в тексте задачи. В любом случае, для составления уравнения нам потребуется выписать их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3).

Рассмотрим еще одну точку на нашей плоскости с произвольными координатами:

T = (x , y , z )

Берем любую точку из первой тройки (например, точку M ) и проведем из нее векторы в каждую из трех оставшихся точек. Получим три вектора:

MN = (x 2 − x 1 , y 2 − y 1 , z 2 − z 1);
MK = (x 3 − x 1 , y 3 − y 1 , z 3 − z 1);
MT = (x − x 1 , y − y 1 , z − z 1).

Теперь составим из этих векторов квадратную матрицу и приравняем ее определитель к нулю. Координаты векторов станут строчками матрицы - и мы получим тот самый определитель, который указан в теореме:

Эта формула означает, что объем параллелепипеда, построенного на векторах MN , MK и MT , равен нулю. Следовательно, все три вектора лежат в одной плоскости. В частности, и произвольная точка T = (x , y , z ) - как раз то, что мы искали.

Замена точек и строк определителя

У определителей есть несколько замечательных свойств, которые еще более упрощают решение задачи C2 . Например, нам неважно, из какой точки проводить векторы. Поэтому следующие определители дают такое же уравнение плоскости, как и приведенный выше:

Также можно менять местами строчки определителя. Уравнение при этом останется неизменным. Например, многие любят записывать строчку с координатами точки T = (x ; y ; z ) в самом верху. Пожалуйста, если вам так удобно:

Некоторых смущает, что в одной из строчек присутствуют переменные x , y и z , которые не исчезают при подстановке точек. Но они и не должны исчезать! Подставив числа в определитель, вы должны получить вот такую конструкцию:

Затем определитель раскрывается по схеме, приведенной в начале урока, и получается стандартное уравнение плоскости:

Ax + By + Cz + D = 0

Взгляните на пример. Он последний в сегодняшнем уроке. Я специально поменяю строчки местами, чтобы убедиться, что в ответе получится одно и то же уравнение плоскости.

Задача. Составьте уравнение плоскости, проходящей через точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1).

Итак, рассматриваем 4 точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1);
T = (x , y , z ).

Для начала составим стандартный определитель и приравниваем его к нулю:

Раскрываем определитель:

a = 0 · 1 · (z − 1) + 1 · 0 · (x − 1) + (−1) · (−1) · y = 0 + 0 + y;
b = (−1) · 1 · (x − 1) + 1 · (−1) · (z − 1) + 0 · 0 · y = 1 − x + 1 − z = 2 − x − z;
d = a − b = y − (2 − x − z ) = y − 2 + x + z = x + y + z − 2;
d = 0 ⇒ x + y + z − 2 = 0;

Все, мы получили ответ: x + y + z − 2 = 0 .

Теперь давайте переставим пару строк в определителе и посмотрим, что произойдет. Например, запишем строчку с переменными x , y , z не внизу, а вверху:

Вновь раскрываем полученный определитель:

a = (x − 1) · 1 · (−1) + (z − 1) · (−1) · 1 + y · 0 · 0 = 1 − x + 1 − z = 2 − x − z;
b = (z − 1) · 1 · 0 + y · (−1) · (−1) + (x − 1) · 1 · 0 = y;
d = a − b = 2 − x − z − y;
d = 0 ⇒ 2 − x − y − z = 0 ⇒ x + y + z − 2 = 0;

Мы получили точно такое же уравнение плоскости: x + y + z − 2 = 0. Значит, оно действительно не зависит от порядка строк. Осталось записать ответ.

Итак, мы убедились, что уравнение плоскости не зависит от последовательности строк. Можно провести аналогичные вычисления и доказать, что уравнение плоскости не зависит и от точки, координаты которой мы вычитаем из остальных точек.

В рассмотренной выше задаче мы использовали точку B 1 = (1, 0, 1), но вполне можно было взять C = (1, 1, 0) или D 1 = (0, 1, 1). В общем, любую точку с известными координатами, лежащую на искомой плоскости.

Рассмотрим в пространстве плоскость Q. Положение ее вполне определяется заданием вектора N, перпендикулярного этой плоскости, и некоторой фиксированной точки лежащей в плоскости Q. Вектор N, перпендикулярный плоскости Q, называется нормальным вектором этой плоскости. Если обозначить через А, В и С проекции нормального вектора N, то

Выведем уравнение плоскости Q, проходящей через данную точку и имеющей данный нормальный вектор . Для этого рассмотрим вектор соединяющий точку с произвольной точкой плоскости Q (рис. 81).

При любом положении точки М на плоскости Q вектор МХМ перпендикулярен нормальному вектору N плоскости Q. Поэтому скалярное произведение Запишем скалярное произведение через проекции. Так как , а вектор , то

и, следовательно,

Мы показали, что координаты любой точки плоскости Q удовлетворяют уравнению (4). Нетрудно заметить, что координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (в последнем случае ). Следовательно, нами получено искомое уравнение плоскости Q. Уравнение (4) называется уравнением плоскости, проходящей через данную точку. Оно первой степени относительно текущих координат

Итак, мы показали, что всякой плоскости соответствует уравнение первой степени относительно текущих координат.

Пример 1. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору .

Решение. Здесь . На основании формулы (4) получим

или, после упрощения,

Придавая коэффициентам А, В и С уравнения (4) различные значения, мы можем получить уравнение любой плоскости, проходящей через точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей. Уравнение (4), в котором коэффициенты А, В и С могут принимать любые значения, называются уравнением связки плоскостей.

Пример 2. Составить уравнение плоскости, проходящей через три точки , (рис. 82).

Решение. Напишем уравнение связки плоскостей, проходящих через точку

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

1. Общее уравнение плоскости

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0 , где А, В, С – координаты вектора

N = Ai + Bj + Ck -вектор нормали к плоскости. Возможны следующие частные случаи:

A = 0 – плоскость параллельна оси Ох

B = 0 – плоскость параллельна оси Оу C = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

A = B = 0 – плоскость параллельна плоскости хОу A = C = 0 – плоскость параллельна плоскости хОz B = C = 0 – плоскость параллельна плоскости yOz A = D = 0 – плоскость проходит через ось Ох

B = D = 0 – плоскость проходит через ось Оу C = D = 0 – плоскость проходит через ось Oz

A = B = D = 0 – плоскость совпадает с плоскостью хОу A = C = D = 0 – плоскость совпадает с плоскостью xOz B = C = D = 0 – плоскость совпадает с плоскостью yOz

2. Уравнение поверхности в пространстве

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

3. Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какиелибо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М1 (x1 , y1 , z1 ), M2 (x2 , y2 , z2 ), M3 (x3 , y3 , z3 ) в общей декартовой системе

координат.

Для того, чтобы произвольная точка M (x , y , z )

лежала в одной плоскости с точками

M 1 , M 2 , M 3 необходимо, чтобы векторы M 1 M 2 , M 1 M 3 , M 1 M были компланарны, т.е

M1 M = { x − x1 ; y − y1 ; z − z1 }

(M 1 M 2 , M 1 M 3 , M 1 M ) = 0. Таким образом, M 1 M 2

= { x 2 − x 1 ; y 2

− y 1 ; z 2 − z 1}

M1 M 3

= { x 3 − x 1 ; y 3 − y 1 ; z 3 − z 1}

x − x1

y − y1

z − z1

Уравнение плоскости, проходящей через три точки:

x 2 − x 1

y 2 − y 1

z 2 − z 1

x 3 − x 1

y 3 − y 1

z 3 − z 1

4. Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и векторa = (a 1 , a 2 , a 3 ) .

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную

точку М(х, у, z) параллельно вектору a .

Векторы M1 M = { x − x1 ; y − y1 ; z − z1 }

и вектор a = (a , a

должны быть

M 1M 2 = { x 2 − x 1 ; y 2 − y 1 ; z 2 − z 1}

x − x1

y − y1

z − z1

компланарны, т.е. (M 1 M , M 1 M 2 , a ) = 0.Уравнение плоскости:

x 2 − x 1

y 2 − y 1

z 2 − z 1

5. Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Пусть заданы два вектора a = (a 1 , a 2 , a 3 ) и b = (b 1 ,b 2 ,b 3 ) , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы a ,b , MM 1 должны быть компланарны.

6. Уравнение плоскости по точке и вектору нормали

Теорема. Если в пространстве задана точка M 0 (x 0 , y 0 , z 0 ) , то уравнение плоскости, проходящей через точку M 0 перпендикулярно вектору нормали N (A , B ,C ) имеет вид: A (x − x 0 ) + B (y − y 0 ) + C (z − z 0 ) = 0 .

7. Уравнение плоскости в отрезках

Если в общем уравнении Ax + By + Cz + D = 0 поделить обе части на (-D)

x −

y −

z − 1 = 0 , заменив −

C , получим уравнение плоскости

в отрезках:

1 . Числа a, b, c являются точками пересечения плоскости соответственно

с осями х, у, z.

8. Уравнение плоскости в векторной форме

r n = p , где r = xi + yj + zk - радиусвектор текущей точки M (x , y , z ) ,

n = i cosα + j cos β + k cosγ - единичный вектор, имеющий направление, перпендикуляра,

опущенного на плоскость из начала координат. α , β и γ - углы, образованные этим вектором с осями х, у, z. p – длина этого перпендикуляра. В координатах это уравнение имеет вид:

x cosα + y cos β + z cosγ − p = 0

9. Расстояние от точки до плоскости

Расстояние от произвольной точки M 0 (x 0 , y 0 , z 0 ) до плоскости Ax + By + Cz + D = 0 равно:

d = Ax0 + By0 + Cz0 + D

A2 + B2 + C 2

Пример. Найти уравнение плоскости, проходящей через точки А(2,-1,4) и В(3,2,-1) перпендикулярно плоскости x + y + 2z − 3 = 0 .

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0 , вектор нормали к этой плоскости n 1 (A,B,C). Вектор AB (1,3,-5) принадлежит плоскости. Заданная нам плоскость,

перпендикулярная искомой имеет вектор нормали n 2 (1,1,2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

n = AB × n

− 5

− j

− 5

11 i − 7 j − 2 k .

− 5

Таким образом, вектор нормали n 1 (11,-7,-2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е.

11.2 + 7.1− 2.4 + D = 0; D = − 21. Итого, получаем уравнение плоскости: 11x − 7 y − 2z − 21 = 0

10. Уравнение линии в пространстве

Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе координат удовлетворяют уравнению:

F (x , y , z ) = 0 . Это уравнение называется уравнением линии в пространстве.

Кроме того, линия в пространстве может быть определена и иначе. Ее можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана какимлибо уравнением.

Пусть F (x , y , z ) = 0 и Ф (x , y , z ) = 0 – уравнения поверхностей, пересекающихся по линии L.

F (x , y , z ) = 0

Тогда пару уравнений Ф (x , y , z ) = 0 назовем уравнением линии в пространстве.

11. Уравнение прямой в пространстве по точке и направляющему векторуr 0 = M 0 M .

Т.к. векторы М 0 М и S коллинеарны, то верно соотношение М 0 М = St , где t – некоторый параметр. Итого, можно записать: r = r 0 + St .

Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.

x = x0 + mt

Это векторное уравнение может быть представлено в координатной форме: y = y 0 + nt

z = z0 + pt

Преобразовав эту систему и приравняв значения параметра t, получаем канонические

уравнения прямой в пространстве:

x − x0

y − y0

z − z0

Определение. Направляющими косинусами прямой называются направляющие косинусы вектора S , которые могут быть вычислены по формулам:

cosα =

; cos β =

; cosγ =

N 2 + p 2

m 2 + n 2 + p 2

Отсюда получим: m : n : p = cosα : cos β : cosγ .

Числа m , n , p называются угловыми коэффициентами прямой. Т.к. S - ненулевой вектор, то m, n и p не могут равняться нулю одновременно, но одно или два из этих чисел могут равняться нулю. В этом случае в уравнении прямой следует приравнять нулю соответствующие числители.

12. Уравнение прямой в пространстве, проходящей через две точки

Если на прямой в пространстве отметить две произвольные точки M 1 (x 1 , y 1 , z 1 ) и

M 2 (x 2 , y 2 , z 2 ) , то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

x 2 − x 1

y 2 − y 1

z 2 − z 1

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат - Ox , Oy и Oz . Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости , имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x , y , z . Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

Вектор задан по условию. Координаты вектора найдём по формуле :

.

Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P . Для точки N , не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используем формулу (1), еще раз посмотрим на неё:

В этой формуле числа A , B и C координаты вектора , а числа x 0 , y 0 и z 0 - координаты точки .

Вычисления очень простые: подставляем эти числа в формулу и получаем

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

.

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

называется общим уравнением плоскости .

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz , нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0 . Поэтому получаем z = 6 . Таким образом, заданная плоскость пересекает ось Oz в точке A (0; 0; 6) .

Точно так же находим точку пересечения плоскости с осью Oy . При x = z = 0 получаем y = −3 , то есть точку B (0; −3; 0) .

И, наконец, находим точку пересечения нашей плоскости с осью Ox . При y = z = 0 получим x = 2 , то есть точку C (2; 0; 0) . По трём полученным в нашем решении точкам A (0; 0; 6) , B (0; −3; 0) и C (2; 0; 0) строим заданную плоскость.

Рассмотрим теперь частные случаи общего уравнения плоскости . Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0 (0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox , поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy , а при C = 0 плоскость параллельна оси Oz .

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox , поскольку она параллельна оси Ox (A = D = 0). Аналогично, плоскость проходит через ось Oy , а плоскость через ось Oz .

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy , поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz , а плоскость - плоскости xOz .

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy , так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz , а уравнение x = 0 - координатную плоскость yOz .

Пример 3. Составить уравнение плоскости P , проходящей через ось Oy и точку .

Решение. Итак, плоскость проходит через ось Oy . Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P .

Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:

M 0 (2; −4; 3) .

Среди них x = 2 , z = 3 . Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:

2A + 3C = 0 .

Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем

A = −1,5C .

Подставив найденное значение A в уравнение , получим

или .

Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .

Решения типичных задач, которые бывают на контрольных работах - в пособии "Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке" .

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

(3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:

и определить частный случай общего уравнения прямой, если такой имеет место.

Решение. По формуле (3) имеем:

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Нормальным уравнением плоскости называется её уравнение, записанное в виде