Общие сведения о взрыве и процессах горения. Общая характеристика взрывов и их повреждающих факторов Общие сведения о взрыве

Классификация

Взрывы классифицируют по происхождению выделившейся энергии на:

  • Химические.
  • Взрывы ёмкостей под давлением (баллоны , паровые котлы):
    • Взрывы при сбросе давления в перегретых жидкостях.
    • Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
  • Кинетические (падение метеоритов).
  • Электрические (например при грозе).
  • Взрывы сверхновых звёзд.

Химические взрывы

Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при горении. Как правило, скорость детонации выше скорости горения, однако это не является абсолютным правилом. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы детонации в горение и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв .

Параметры взрывчатых веществ

В следующей таблице для трёх ВВ приведены суммарные химические формулы и основные детонационные параметры: удельная энергия взрыва Q, начальная плотность r, скорость детонации D, давление P и температура T на момент завершения реакции.

ВВ Формула Q, ккал/кг p, г/см3 D, км/с P, ГПа T, K
ТНТ 1,0 1,64 7,0 21 3600
Гексоген 1,3 1,8 8,8 34 3900
БТФ 1,4 1,9 8,5 33 5100

Ядерные взрывы

Защита зданий от взрыва

Терроризм становится все большей и большей угрозой. Это требует принятия соответствующих мер. До сравнительно недавнего времени считалось: чтобы выдержать наружный взрыв, конструкция здания должна быть необыкновенно крепкой.

Оказывается, это совсем не обязательно. Новый подход, воплощенный в Конструктивном занавесе здания против наружного взрыва и осколков (Sails-Rigging Blast Protective Shield ), основан на идее временного накопления энергии взрыва, ее поглощении и рассеивании . Конструктивный занавес включает в себя парус, такелаж и пилястры (см. изображение справа). В помещениях со взрывоопасными производственными процессами площадь окон должна быть не менее двух третей от площади стен, чтобы ударная волна вышла, не разрушив здание полностью.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

Смотреть что такое "Взрыв" в других словарях:

    взрыв - взрыв, а … Русский орфографический словарь

    Сущ., м., употр. часто Морфология: (нет) чего? взрыва, чему? взрыву, (вижу) что? взрыв, чем? взрывом, о чём? о взрыве; мн. что? взрывы, (нет) чего? взрывов, чему? взрывам, (вижу) что? взрывы, чем? взрывами, о чём? о взрывах 1. Взрыв какого либо… … Толковый словарь Дмитриева

    А, м. 1. Освобождение большого количества энергии в ограниченном объёме за короткий промежуток времени, вызванное воспламенением взрывчатого вещества, ядерной реакцией и другими причинами. Атомный, тепловой в. В. метана в шахте. В. снаряда, мины … Энциклопедический словарь

    взрыв - потряс действие, субъект взрыв прогремел существование / создание, субъект, факт взрыв произошёл существование / создание, субъект, факт вызвать взрыв действие, каузация вызвать новый взрыв действие, каузация гремят взрывы действие,… … Глагольной сочетаемости непредметных имён

    ВЗРЫВ, взрыва, муж. 1. Особая химическая реакция, воспламенение с мгновенным расширением образовавшихся газов, производящее разрушительные действия (спец.). Взрыв пороха. Взрывы снарядов. || Вызванное этой реакцией разрушение, сопровождающееся… … Толковый словарь Ушакова

Взрыв - быстропротекающий физический или физико-химический процесс, проходящий со значительным выделением энергии в небольшом объёме за короткий промежуток времени и приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду вследствие высокоскоростного расширения продуктов взрыва .

Дефлаграционный взрыв - энерговыделение в объёме облака горючих газообразных смесей и аэрозолей при распространении экзотермической химической реакции с дозвуковой скоростью .

Детонационный взрыв - взрыв, при котором воспламенение последующих слоев взрывчатого вещества происходит в результате сжатия и нагрева ударной волной, характеризующейся тем, что ударная волна и зона химической реакции следуют неразрывно друг за другом с постоянной сверхзвуковой скоростью .

Химический взрыв неконденсированных веществ от горения отличается тем, что горение происходит, когда горючая смесь образуется в процессе самого горения. :36

Продукты взрыва обычно являются газами с высокими давлением и температурой, которые, расширяясь, способны совершать механическую работу и вызывать разрушения других объектов. В продуктах взрыва помимо газов могут содержаться и твёрдые высокодисперсные частицы. Разрушительное действие взрыва вызвано высоким давлением и образованием ударной волны . Действие взрыва может быть усилено кумулятивными эффектами .

Энциклопедичный YouTube

  • 1 / 5

    По происхождению выделившейся энергии различают следующие типы взрывов:

    • Химические взрывы взрывчатых веществ - за счёт энергии химических связей исходных веществ.
    • Взрывы ёмкостей под давлением (газовые баллоны , паровые котлы , трубопроводы) - за счет энергии сжатого газа или перегретой жидкости. К ним, в частности, относятся:
      • Взрыв расширяющихся паров вскипающей жидкости (BLEVE) .
      • Взрывы при сбросе давления в перегретых жидкостях.
      • Взрывы при смешивании двух жидкостей, температура одной из которых намного превышает температуру кипения другой.
    • Ядерные взрывы - за счет энергии, высвобождающейся в ядерных реакциях.
    • Электрические взрывы (например, при грозе).
    • Вулканические взрывы.
    • Взрывы при столкновении космических тел, например, при падении метеоритов на поверхность планеты.
    • Взрывы, вызванные гравитационным коллапсом (взрывы сверхновых звёзд и др.).

    Химические взрывы

    Единого мнения о том, какие именно химические процессы следует считать взрывом, не существует. Это связано с тем, что высокоскоростные процессы могут протекать в виде детонации или дефлаграции (медленного горения). Детонация отличается от горения тем, что химические реакции и процесс выделения энергии идут с образованием ударной волны в реагирующем веществе, и вовлечение новых порций взрывчатого вещества в химическую реакцию происходит на фронте ударной волны, а не путём теплопроводности и диффузии , как при медленном горении. Различие механизмов передачи энергии и вещества влияют на скорость протекания процессов и на результаты их действия на окружающую среду, однако на практике наблюдаются самые различные сочетания этих процессов и переходы горения в детонацию и обратно. В связи с этим обычно к химическим взрывам относят различные быстропротекающие процессы без уточнения их характера.

    Существует более жёсткий подход к определению химического взрыва как исключительно детонационному. Из этого условия с необходимостью следует, что при химическом взрыве, сопровождаемом окислительно-восстановительной реакцией (сгоранием), сгорающее вещество и окислитель должны быть перемешаны, иначе скорость реакции будет ограничена скоростью процесса доставки окислителя, а этот процесс, как правило, имеет диффузионный характер. Например, природный газ медленно горит в горелках домашних кухонных плит, поскольку кислород медленно попадает в область горения путём диффузии. Однако, если перемешать газ с воздухом, он взорвётся от небольшой искры - объёмный взрыв . Существуют очень немногие примеры химических взрывов, не имеющих своей причиной окисление/восстановление, например реакция мелкодисперсного оксида фосфора(V) с водой, но её можно рассматривать и как паровой взрыв .

    Индивидуальные взрывчатые вещества , как правило, содержат кислород в составе своих собственных молекул. Это метастабильные вещества, которые способны храниться более или менее долгое время при нормальных условиях. Однако при инициировании взрыва веществу передаётся достаточная энергия для самопроизвольного распространения волны горения или детонации, захватывающей всю массу вещества. Подобными свойствами обладают нитроглицерин , тринитротолуол и другие вещества.

    Взрыв – это весьма быстрое изменение химического (физического) состояния взрывчатого вещества, сопровождающееся выделением большого количества тепла и образованием большого количества газов, создающих ударную волну, способную своим давлением вызывать разрушения.

    Взрывчатыми веществами (ВВ) – особые группы веществ, способные к взрывчатым превращениям в результате внешних воздействий.
    Различают взрывы :

    1.Физический – высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (сжиженного пара). Сила взрыва зависит от внутреннего давления. Возникающие разрушения могут вызываться ударной волной от расширяющегося газа или осколками разорвавшегося резервуара (Пример: разрушение резервуаров со сжатым газом, паровых котлов, а также мощные электрические разряды)

    2.Химический – взрыв, вызванный быстрой экзотермической химической реакцией, протекающей с образованием сильно сжатых газообразных или парообразных продуктов. Примером может служить взрыв дымного пороха, при котором происходит быстрая химическая реакция между селитрой, углем и серой, сопровождающаяся выделением, значительного количества теплоты. Образовавшиеся газообразные продукты, нагретые за счет теплоты реакции до высокой температуры, обладают высоким давлением и, расширяясь, производят механическую работу.

    3.Атомные взрывы . Быстропротекающие ядерные и ли термоядерные реакции (реакции деления или соединения атомных ядер), при которых освобождается очень большое количество теплоты. Продукты реакции, оболочка атомной или водородной бомбы и некоторое количество окружающей бомбу среды мгновенно превращается в нагретые до очень высокой температуры газы, обладающие соответственно высоким давлением. Явление сопровождается колоссальной механической работой.

    Химические взрывы подразделяются на конденсированные и объемные взрывы.

    А) Под конденсированными взрывчатыми веществами понимаются химические соединения и смеси, находящиеся в твердом или жидком состоянии, которые под влиянием определенных внешних условий способны к быстрому самораспространяющемуся химическому превращению с образованием сильно нагретых и обладающих большим давлением газов, которые, расширяясь, производят механическую работу. Такое химическое превращение ВВ принято называть взрывчатым превращением.

    Возбуждением взрывчатого превращения ВВ называется инициированием. Для возбуждения взрывчатого превращения ВВ требуется сообщить ему с определенной интенсивностью необходимое количество энергии (начальный импульс), которая может быть передана одним из следующих способов:
    - механическим (удар, накол, трение);
    - тепловым (искра, пламя, нагревание);
    - электрическим (нагревание, искровой разряд);
    - химическим (реакции с интенсивным выделением тепла);
    - взрывом другого заряда ВВ (взрыв капсюля-детонатора или соседнего заряда).

    Конденсированные ВВ подразделяются на группы :

    Характеристика. Примеры вещества.

    Чрезвычайно опасные вещества

    Нестабильны. Взрываются даже в самых малых количествах. Трихлорид азота; некоторые органические перекисные соединения; ацетиленид меди, образующийся при контакте ацетилена с медью
    или медесодержащим сплавом

    Первичные ВВ

    Менее опасные вещества. Инициирующие соединения. Обладают очень высокой чувствительность к удару и тепловому воздействию. Используются в основном в капсулях-детонаторах для возбуждения детонации в зарядах ВВ. Азид свинца, гремучая ртуть.

    Вторичные ВВ (бризантные ВВ)

    Возбуждение детонации в них происходит при воздействии сильной ударной волны. Последняя может создаваться в процессе их горения или с помощью детонатора. Как правило, ВВ этой группы сравнительно безопасны в обращении и могут храниться в течение длительных промежутков времени. Динамиты, тротил, гексоген, октоген, централит.

    Метательные ВВ, пороха

    Чувствительность к удару очень мала, относительно медленно горят.
    Баллиститные пороха – смесь нитроцеллюлозы, нитроглицерина и других технологических добавок.
    Загораются от пламени, искры или нагрева. На открытом воздухе быстро горят. В замкнутом сосуде взрываются. На месте взрыва черного пороха, содержащего азотнокислый калий, серу и древесный уголь в отношениях 75:15:10, остается остаток, содержащий углерод.

    Классификацию взрывов можно произвести и по типам химических реакций:

    1. Реакция разложения – процесс разложения, который дают газообразные продукты
    2. Окислительно-восстановительная реакция – реакция, в которой воздух или кислород реагирует с восстановителем
    3. Реакция смесей – пример такой смеси – порох.

    Б) Объемные взрывы бывают двух типов:

    • Взрывы облака пыли (пылевые взрывы) рассматриваются как взрывы пыли в штольнях шахт и в оборудовании или внутри здания. Такие взрывоопасные смеси возникают при дроблении, просеве, насыпке, перемещении пылящих материалов. Взрывоопасные пылевые смеси имеют нижний концентрационный предел взрываемости (НКПВ) , определяемый содержанием (в граммах на кубический метр) пыли в воздухе. Так для порошка серы НКПВ составляет 2,3 г/м3. Концентрационные пределы пыли не являются постоянными и зависят от влажности, степени измельчения, содержания горючих веществ.

    В основе механизма пылевых взрывов на шахтах лежат относительно слабые взрывы газовоздушной смеси воздуха и метана. Такие смеси считаются уже взрывоопасными при 5%-ной концентрации метана в смеси. Взрывы газовоздушной смеси вызывают турбулентность воздушных потоков, достаточных для того, чтобы образовать пылевое облако. Воспламенение пыли порождает ударную волну, поднимающую еще большее количество пыли, и тогда может произойти мощный разрушительный взрыв.

    Меры, применяемые для предупреждения пылевых взрывов:

      1. вентиляция помещений, объектов
      2. увлажнение поверхностей
      3. разбавление инертными газам (СО 2, N2) или порошками силикатными

    Пылевые взрывы внутри зданий, оборудования чаще всего происходят на элеваторах, где из-за трения зернышек при их перемещении образуется большое количество мелкой пыли.

    • Взрывы паровых облаков – процессы быстрого превращения, сопровождающиеся возникновением взрывной волны, происходящие на открытом воздушном пространстве в результате воспламенения облака, содержащего горючий пар.

    Такие явления возникают при утечке сжиженного газа, как правило, в ограниченных пространствах (помещениях), где быстро растет та предельная концентрация горючих элементов, при которой происходит воспламенение облака.
    Меры, применяемые для предупреждения взрывов паровых облаков:

      1. сведение к минимуму использования горючего газа или пара
      2. отсутствие источников зажигания
      3. расположение установок на открытом, хорошо проветриваемой местности

    Наиболее часто ЧС, связанные с взрывами газа , возникают при эксплуатации коммунального газового оборудования.

    Для предупреждения таких взрывов ежегодно проводят профилактику газового оборудования. Здания взрывоопасных цехов, сооружений, часть панелей в стенах делают легкоразрушаемыми, а крыши – легкосбрасываемыми.

    На предприятиях общественного питания используют и перерабатывают горючее и взрывоопасное сырье в различном агрегатном состоянии (эссенции, органические кислоты, жиры, масла, мука, сахарная пудра и др.). Кроме того, производство оснащено сосудами и аппаратами, работающими под избыточным давлением, в том числе холодильными установками, хладагентом которых, как правило, является взрывоопасный газ или аммиак. Для нагрева, сушки, обжарки, варки, выпечки применяют тепловое оборудование, работающее на тепловом проявлении электрического тока, газовом, жидком и твердом топливе. Исходя из свойств обращающихся веществ, характера технологических процессов, пищевое производство относят к числу взрыво- и пожароопасных.

    Взрывом называется быстрое выделение энергии, связанное с внезапным изменением состояния вещества, сопровождаемое разрушением окружающей среды и распространением в ней ударной или взрывной волны, переходом начальной энергии в энергию движения вещества.

    При взрыве развиваются давления в десятки и сотни тысяч атмосфер, а скорости движения взрывчатого вещества измеряются километрами в секунду.

    Взрывчатые вещества - это соединения или смеси, способные к быстрому, самораспространяющемуся химическому превращению с образованием газов и выделением значительного количества тепла. Такое превращение, возникнув в какой-либо точке под воздействием соответствующего импульса (нагрева, механического удара, взрыва другого взрывчатого вещества), распространяется с большой скоростью на всю массу взрывчатого вещества.

    Быстрое образование значительных объемов газов и их нагрев до высоких температур (1800 ... 3800 °С) за счет теплоты реакции объясняют причину возникновения на месте взрыва высокого давления.

    В отличие от сгорания обычного топлива реакция взрыва протекает без участия кислорода воздуха и вследствие больших скоростей процесса позволяет получить в небольшом объеме огромные мощности. Например, 1 кг угля требует около 11 м 3 воздуха, при этом выделяется приблизительно 9300 Вт теплоты. Взрыв 1 кг гек-согена, занимающего объем 0,00065 м 3 происходит за стотысячную долю секунды и сопровождается выделением 1580 Вт теплоты.

    В некоторых случаях исходная энергия с самого начала представляет собой тепловую энергию сжатых газов. В какой-то момент, вследствие снятия или ослабления связей, газы могут расширяться и произойдет взрыв. К такому роду взрыва можно отнести взрыв баллонов со сжатыми газами. Близкими к этому виду взрывов относят взрывы паровых котлов. Однако исходная энергия сжатых газов у них составляет лишь часть энергии взрыва; существенную роль здесь играет наличие перегретой жидкости, которая может быстро испариться при снижении давления.

    Причины и характер возникновения взрыва могут быть различными.

    Цепная теория возникновения газового взрыва определяет условия, при которых происходят цепные реакции. Цепные реакции -это химические реакции, в которых появляются активные вещества (свободные радикалы). Свободные радикалы в отличие от молекул обладают свободными ненасыщенными валентностями, что приводит к легкому их взаимодействию с исходными молекулами. При взаимодействии свободного радикала с молекулой происходит разрыв одной из валентных связей последней и, таким образом, в результате реакции образуется новый свободный радикал. Этот радикал, в свою очередь, легко реагирует с другой исходной молекулой, вновь образуя при этом свободный радикал. В результате путем повторения этих циклов происходит лавинообразное нарастание числа активных центров взрывоопасности.

    Тепловая энергия исходит из условий нарушения теплового равновесия, при котором приход тепла вследствие реакции становится больше теплоотдачи. Возникающий в системе разогрев дополнительно воздействует на реакцию. В результате возникает прогрессивное нарастание скорости реакции, приводящее при определенных условиях к взрыву. При тепловом воздействии может образоваться взрыв большой мощности и сравнительно медленное горение.

    Возникновение взрыва при ударе связано с действием локальных микроскопических разогревов, которые особенно сильны из-за наличия при ударе очень высокого давления. Локальные разогревы охватывают огромное количество молекул и при определенных условиях приводят к взрыву.

    Возникающие при взрыве сжатие и движение окружающей среды (воздуха, воды, грунта) передаются все более и более удаленным слоям. В среде распространяется особого рода возмущение - ударная, или взрывная, волна. Когда эта волна приходит в какую-либо точку пространства, то плотность, температура и давление скачком повышаются и вещество среды начинает двигаться в направлении распространения волны. Скорость распространения сильной ударной волны, как правило, значительно превышает скорость звука. По мере распространения эта скорость уменьшается, и в конце концов ударная волна превращается в обычную звуковую волну.

    Вблизи от очага взрыва скорость движения воздуха может достигать тысяч метров в секунду, а кинетическая энергия движущегося воздуха равна 50% полной энергии ударной волны.

    При распространении ударной волны не в инертной среде, а, например, во взрывчатом веществе она может вызвать быстрое его химическое превращение, которое распространяется по веществу со скоростью волны, поддерживает ударную волну и не дает ей затухнуть. Это явление называется детонацией , а ударная волна, способствующая быстрой реакции, называется детонационной волной.

    Как правило, любой взрыв вызывает пожары. Горением называется сложный физико-химический процесс взаимодействия горючего вещества и окислителя. Окислителями в процессе горения могут быть кислород, хлор, бром и некоторые другие вещества, такие, как азотная кислота, бертолетова соль и перекись натрия. Обычным окислителем в процессах горения является кислород, находящийся в воздухе. Реакция окисления при определенных условиях может самоускоряться. Этот процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Условиями для возникновения и протекания горения в этом случае является наличие горючего вещества, кислорода воздуха и источника воспламенения. Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник воспламенения вызывает в ней реакцию горения.

    Горючие системы могут быть химически однородными и неоднородными. К химически однородным относятся системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом, например смеси горючих газов, паров или пылей с воздухом.

    К химически неоднородным относятся системы, в которых горючее вещество и воздух имеют поверхности раздела, например твердые горючие материалы и жидкости, струи горючих газов и паров, поступающих в воздух. При. горении химически неоднородных горючих систем кислород воздуха непрерывно диффундирует сквозь продукты сгорания к горючему веществу и затем вступает с ним в реакцию.

    Выделившаяся в зоне горения теплота воспринимается продуктами сгорания, вследствие чего они нагреваются до высокой температуры, которая называется температурой горения.

    Кинетическое горение, т. е. горение химически однородной горючей смеси газов, паров или пыли с воздухом, протекает различно. Если горючая смесь поступает с определенной скоростью из горелки, то она сгорает устойчивым пламенем. Горение этой же смеси, заполнившей замкнутый объем, может вызвать химический взрыв.

    Кинетическое горение возможно только при определенном соотношении газа, паров, пыли и воздуха. Минимальная и максимальная концентрации горючих веществ в воздухе, способных воспламеняться, называются нижним и верхним концентрационными пределами воспламенения (взрыва).

    Все смеси, концентрации которых находятся между пределами воспламенения, называют взрыво- и пожароопасными.

    Смеси, концентрации которых находятся ниже нижнего и выше верхнего пределов воспламенения, в замкнутых объемах гореть не способны и считаются безопасными. Однако смеси, концентрация которых находится выше верхнего предела воспламенения, при выходе из замкнутого объема воздуха способны гореть диффузионным пламенем, т. е. ведут себя как пары и газы, не смешанные с воздухом.

    Концентрационные пределы воспламенения непостоянны и зависят от ряда факторов. Большое влияние на изменение пределов воспламенения оказывают мощность источника воспламенения, примесь инертных газов и паров, температура и давление горючей смеси.

    Увеличение мощности источника воспламенения ведет к расширению области воспламенения (взрыва) с понижением нижнего предела и повышением верхнего предела воспламенения.

    При введении негорючих газов в взрывчатую смесь происходит резкое уменьшение верхнего предела воспламенения и незначительное изменение нижнего. Область воспламенения сокращается и при определенной концентрации негорючих газов смесь перестает воспламеняться.

    С повышением начальной температуры взрывчатой смеси промежуток воспламенения ее расширяется, при этом нижний предел уменьшается, а верхний увеличивается.

    При уменьшении давления горючей смеси ниже нормального происходит уменьшение области воспламенения. При низком давлении смесь становится безопасной.

    При нижнем пределе воспламенения смеси количество выделяемого тепла незначительно и поэтому давление при взрыве не превышает 0,30 ... 0,35 МПа. С увеличением концентрации горючего вещества растет давление взрыва. Оно для большинства смесей составляет 1,2 МПа.

    При дальнейшем повышении концентрации горючего вещества давление взрыва снижается и на верхнем пределе воспламенения становится таким же, как и на нижнем.

    Взрывоопасные свойства смесей паров с воздухом не отличаются от свойств смесей горючих газов с воздухом. Концентрация насыщенных паров жидкости находится в определенной взаимосвязи с ее температурой. Эти температуры называют температурными пределами воспламенения (взрываемости).

    Верхним температурным пределом называется та наибольшая температура жидкости, при которой образуется смесь насыщенных паров с воздухом, еще способная воспламеняться, однако выше этой температуры образовавшиеся пары в смеси с воздухом в замкнутом объеме воспламеняться не могут.

    Нижним температурным пределом называется та наименьшая температура жидкости, при которой образуется смесь насыщенных паров с воздухом, способная воспламеняться при поднесении к ней источника воспламенения. При более низкой температуре жидкости смесь паров с воздухом не способна воспламеняться.

    Нижний температурный предел воспламенения жидкостей иначе называется температурой вспышки, которая принята за основу классификации жидкостей по степени их пожарной опасности. Так, жидкости, имеющие температуру вспышки до 45 °С, называют легковоспламеняющимися, а выше 45 °С - горючими.

    На пищевых предприятиях многие технологические процессы сопровождаются выделением мелкодисперсной органической пыли (мучной, сахарной пудры, крахмальной и др.), которая при определенной концентрации образует взрывоопасную пылевоздушную смесь.

    Пыль может находиться в двух состояниях: взвешенной в воздухе (аэрозоль) и осевшей на стенах, потолках, конструктивных частях оборудования и т. д. (аэрогель).

    Аэрогель характеризуется температурой самовоспламенения, мало отличающейся от температуры самовоспламенения твердого вещества.

    Температура самовоспламенения аэрозоля всегда значительно выше, чем у аэрогеля, и даже превышает температуру самовоспламенения паров и газов. Объясняется это тем, что концентрация горючего вещества в единице объема аэрозоля в сотни раз меньше, чем у аэрогеля, поэтому скорость выделения тепла может превышать скорость теплоотдачи только при значительно высокой температуре.

    В табл. приведены температуры самовоспламенения аэрогеля и аэрозоля некоторых пылей.

    Как и у газовых смесей, воспламенение и распространение пламени по всему объему аэрозоля возникают только в том случае, если его концентрация находится выше нижнего предела воспламенения.

    Что касается верхних пределов воспламенения аэрозолей, то они настолько велики, что в большинстве случаев практически недостижимы. Например, концентрация верхнего предела воспламенения сахарной пыли равна 13500 г/м 3 .

    Температура самовоспламенения горючих веществ разнообразна. У одних она превышает 500 °С, у других находится в пределах окружающей среды, которую в среднем можно принять 0 ... 50°С.

    Например, желтый фосфор при температуре 15°С самонагревается и загорается. Вещества, способные самовоспламеняться без нагрева, представляют большую пожарную опасность и называются самовозгорающимися, а процесс самонагревания их до стадии горения определяют термином самовозгорание. Самовозгорающиеся вещества подразделяют на три группы:

    вещества, самовозгорающиеся от воздействия на них воздуха (растительные масла, животные жиры, бурый и каменный угли, сульфиды железа, желтый фосфор и др.);

    вещества, самовозгорающиеся от воздействия на них воды (калий, натрий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, негашеная известь и др.);

    вещества, самовозгорающиеся при смешивании друг с другом (ацетилен, водород, метан и этилен в смеси с хлором; перманганат калия, смешанный с глицерином или этиленгликолем; скипидар в хлоре и др.).

    Большую взрыво- и пожароопасность на пищевых предприятиях представляет смесь органической пыли с воздухом.

    По пожароопасности все пыли в зависимости от их свойств подразделяют на взрывоопасные в состоянии аэрозоля и пожароопасные в состоянии аэрогеля.

    К первому классу по взрывоопасности относят пыли с нижним пределом воспламенения (взрываемости) до 15 г/м 3 . К этому классу относится пыль серы, канифоли, сахарной пудры и др.

    Ко второму классу причисляют взрывоопасную пыль с нижним пределом воспламенения (взрываемости) 16 ... 65 г/м 3 . К этой группе относится пыль крахмала, муки, лигнина и др.

    Пыли в состоянии аэрогеля по пожароопасности также делятся на два класса: первый класс - наиболее пожароопасные с температурой самовоспламенения до 250 °С (например, табачная пыль - 205 °С, зерновая - 250 °С); второй класс - пожароопасные с температурой самовоспламенения выше 250 °С (например, древесные опилки - 275 °С).

    Физический взрыв - вызывается изменением физического состояния вещества. Химический взрыв - вызывается быстрым химическим превращением веществ, при котором потенциальная химическая энергия переходит в тепловую и кинетическую энергию расширяющихся продуктов взрыва. Аварийный, это взрыв, произошедший в результате нарушения технологии производства, ошибок обслуживающего персонала, либо ошибок, допущенных при проектировании.

    Взрывоопасная "медицинская среда" - представляет часть помещения, в которой взрывчатая среда может возникнуть в малых концентрациях и только на короткое время из-за применения медицинских газов, анестезирующих, коже очищающих или дезинфекционных средств.

    Основные поражающие факторы при взрыве - воздушная ударная волна, осколочные поля, метательное воздействие окружающих предметов, термический фактор (высокая температура и пламя), воздействие токсичных продуктов взрыва и горения, психогенный фактор.

    Взрывная травма возникает при поражающем воздействии взрыва на людей в замкнутом пространстве или на открытой местности, как правило, характеризующаяся открытыми и закрытыми ранениями, травмами, контузией, кровоизлияниями, в том числе во внутренние органы человека, разрывами барабанных перепонок, переломами костей, ожогами кожи и дыхательных путей, удушьем или отравлением, посттравматическим стрессовым расстройством.

    Взрывы на предприятиях промышленности: деформация, разрушение технологического оборудования, энергосистем и транспортных линий, обрушение конструкций и фрагментов помещений, утечка токсических соединений и ядовитых веществ. Взрывоопасные технологические линии:

      Зерновые элеваторы: пыль,

      Мельничные комбинаты: мука,

      Химические предприятия: углеводороды, окислители. Кроме кислорода окислителями являются кислородосодержащие соединения (перхлорат, селитра, порох, термит), отдельные химические элементы (фосфор, бром).

      АЗС и нефтеперерабатывающие комплексы: пары и аэрозоли углеводородов.

    Дистанция поражений на примере взрыва топливозаправщика 5 т. Baiker U. 1995г.) I. Тепловое поражение воздействия огненного шара: - до 45 м. Не совместимое с жизнью, - до 95 м. Ожоги III ст. - до 145 м. Ожоги II ст. - до 150 м. Ожоги I ст. - до 240 м. Ожоги сетчатки глаз. II. Механические повреждения ударной волной: - до 55 м. Не совместимые с жизнью, - до 95 м. ЧМТ, баротравма легких и ЖКТ, - до 140 м. Разрыв барабанных перепонок.

    Взрывная ударная волна может вызывать большие людские потери и разрушение сооружений. Размеры зон поражения зависят от мощности взрыва. Степень использования вторичных мер зависит от вероятности возникновения опасной взрывчатой среды. Опасные площади делятся на разные зоны согласно зависимой от времени и местных условий вероятности присутствия опасной взрывчатой среды.

    Зона 0. Площадь, на которой есть постоянная, частая или долговременная опасная взрывчатая среда и где может образоваться опасная концентрация пыли, аэрозолей или паров. Таких как мельницы, сушилки, смесители, силосохранилища, производственные помещения использующие топливо, продуктопроводы, питающие трубы и т.п..

    Зона 1. Площадь, на которой по причине концентрации горючих паров, аэрозолей, вихревой, осажденной пыли можно ожидать случайного возникновения опасной взрывчатой среды. Непосредственная близость к загрузочным люкам; на площадках заполняющего или разгружающего оборудования; в зонах с хрупким оборудованием или линиями, сделанными из стекла, керамики и т.п.;

    Зона 2.Площадь, на которой можно ожидать появления опасной взрывчатой среды, но очень редко и на короткое время.

    Оценка риска пылевого взрыва

    В непосредственной близости от устройств, содержащих пыль, из которых она может утекать, осаждаться и скапливаться в опасных концентрациях (мельницы). При взрыве пыли с малой концентрацией, находящейся в среде, головная волна сжатия взрыва может вызвать вихревое движение осажденной пыли, что дает большую концентрацию горючего материала. Риск взрыва пылевой смеси гораздо меньше газовой, паровой или туманной. Зоны аварий при объемных взрывах могут охватывать значительные территории. Авария на газопроводе в Башкирии (июнь 1989 г.) 2 кв. км. Погибших-871, раненых 339 чел. Проблема спасения людей после взрыва и пожара состояла в том, что в пламени сгорели практически все медицинские средства для оказания экстренной помощи, а о подручных средствах в подобных случаях, пострадавшие и спасатели практически забыли.

    Основные критерии, определяющие величину санитарных потерь: вид взрывного устройства, мощность взрыва, место взрыва и время суток. В зависимости от количества и локализации повреждения могут быть изолированными, множественными и сочетанными. По тяжести повреждений: легкие, средней тяжести, тяжелые и крайне тяжелые. В таблице 4.1. представлены степени поражения людей в зависимости от величины избыточного давления.

    При соприкосновении с взрывным устройством происходит взрывное разрушение наружных частей тела или разрушение (отрыв) сегментов конечностей. Раневой процесс при этом имеет ряд особенностей: - Острая массивная кровопотеря и шок; - Ушибы легких и сердца; - Травматический эндотоксикоз; - Комбинированный характер воздействия поражающих факторов.